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The steady convective flow within a square region filled with a fluid-saturated porous medium having
internal heat generation at a rate proportional to a power of the temperature difference is considered.
Three dimensionless parameters are identified, a Rayleigh number Ra, a heating rate parameter γ and
the exponent p in the local heating term. The case Ra = 0 is considered first, where a critical value
γc is found, such that there are solutions possible only for γ � γc . This case also identifies a value
γ0, where there is a change in the maximum temperatures Tmax achieved. For γ > γ0, Tmax > 1 and
temperatures above the heated wall value can be generated. Numerical results for Ra > 0 are obtained,
also showing the existence of a critical value γc and a value γ0. These results show that, for larger values
of Ra, boundary layers develop on the vertical walls with a weak eddy flow in the central region. They
also show that significantly higher temperatures than the heated wall can be generated by the internal
heating, particularly for the larger values of γ .

© 2008 Elsevier Masson SAS. All rights reserved.
1. Introduction

There are many practical applications which involve the trans-
port and storage of materials that have a porous nature. Convective
flows can develop within these materials if they are subject to
some form of external heating. These flows can arise naturally
within the porous environment (free convection) or be part of
some more extensive heat and mass transfer process (forced or
mixed convection), for example, if the porous material is exposed
to an external cooling mechanism. Many of these applications are
fully discussed and reviewed in the recent books by Nield and Be-
jan [1], Ingham and Pop [2,3], Vafai [4], Pop and Ingham [5] and
Ingham et al. [6]. There are also situations of considerable practi-
cal importance where the porous material provides its own source
of heat. This gives an alternative way in which a convective flow
can be set up through the local heat generation within the porous
material. Such a situation can arise through radioactive decay or
through, in the present context, a relatively weak exothermic re-
action taking place within the porous material. This can happen
in the self-induced combustion of coal stockpiles [7,8] and in the
storage or transport of organic materials. Bagasse (cellulose waste
left after the extraction of juices from sugar cane) has documented
cases of self-combustion, as studied by [9–11]. There are also re-
strictions on the storage of organic materials on ships, for example,
pistachio nuts [12].
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We model this situation by assuming that the rate of local heat
generation within the porous material is proportional to (T − Tc)

p ,
where T is the local temperature and Tc is some constant refer-
ence temperature. We further restrict attention to the case p � 1.
We consider a two-dimensional, square region with one vertical
wall heated to a temperature Th above that of the reference tem-
perature Tc , the temperature of the other vertical wall. The top and
bottom walls are assumed to be thermally insulated. We find that
the flow and heat transfer depend on the Rayleigh number Ra and
a heat generation parameter γ , as well as the local-heating expo-
nent p. A consideration of the case when Ra = 0 reveals that there
is a critical value γc of γ , dependent on p, such that (steady) solu-
tions exist only for γ < γc . This situation also applies when Ra > 0,
our numerical integrations of the governing equations show that,
for a given exponent p, (steady) solutions can exist only for a finite
range of Ra and γ .

Previous studies of convective flows in porous media within
rectangular enclosures, without the local heat generation effects,
are reviewed in [1–4]. Other geometries have also been treated,
for example Mahmud and Fraser [13] have looked at flows in a
circular enclosure with a temperature differential between the left
and right walls. Marcoux et al. [14] have considered flows in annu-
lar enclosures, and Rathish Kumar and Shalini [15] have modelled
an enclosure with a wavy wall. Singh et al. [16] considered a more
generalised form of enclosure with arbitrary geometry.

There have been relatively few previous treatments of convec-
tive flows in finite enclosures which also include internal heat
generation effects and these have assumed a uniform heating rate
within the porous material. Rao and Wang [17] and Haajizadeh
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Fig. 1. Schematic representation of the model.

et al. [18] considered a uniform heat generation term across an
enclosure with isothermal vertical walls and adiabatic horizontal
walls. Stewart et al. [19] modelled the case where the lower half
of a rectangular container was adiabatic and the upper half was
isothermal. Joshi et al. [20] have given an analytic solution for
small Rayleigh number for a finite container with isothermal walls,
again for uniform heat generation within the porous medium.
Boundary-layer (large Rayleigh) flows in porous media where there
is also internal heat generation have been treated by Magyari et al.
[21,22]. Here we consider the effects of having a non-uniform heat
generation, with the rate of production of heat related to the local
temperature difference.

2. Equations

We consider the steady, two-dimensional natural convection
flow in a square region filled with a fluid-saturated porous
medium, see Fig. 1. The co-ordinate system employed is also de-
picted in this figure. The top and bottom surfaces of the convective
region are assumed to be thermally insulated, the face y = � is
held at the constant reference temperature Tc and the face y = 0
has a constant prescribed temperature Th above Tc . Heat is also
generated internally within the porous medium at a rate propor-
tional to (T − Tc)

p (p � 1), where T is the local temperature. The
fluid and porous medium properties are assumed to be constant
except for the variation of density in the buoyancy term in Dar-
cy’s equation for the fluid flow (Boussinesq approximation). The
porous medium is taken to be homogeneous and isotropic. Under
these assumptions, the equations governing our model are, see for
example [1,2,4],

∂2ψ

∂x2
+ ∂2ψ

∂ y2
= g Kβ

ν

∂T

∂ y
(1)

∂ψ

∂ y

∂T

∂x
− ∂ψ

∂x

∂T

∂ y
= αm

(
∂2T

∂x2
+ ∂2T

∂ y2

)
+ G(T − Tc)

p (2)

where K is the permeability of the porous media, ν the kinematic
viscosity, β the coefficient of thermal expansion, g the acceleration
due to gravity, αm the effective thermal diffusivity and G is a mea-
sure of the local heat generation. The streamfunction ψ , introduced
to satisfy the continuity equation, gives the velocity components as
u = ∂ψ/∂ y, v = −∂ψ/∂x. Eqs. (1), (2) are to be solved subject to
the boundary conditions that
on x = 0, x = �, ψ = 0,
∂T

∂x
= 0 (0 < y < �)

on y = �, ψ = 0, T = Tc (0 < x < �)

on y = 0, ψ = 0, T = Th (0 < x < �) (3)

We make Eqs. (1)–(3) dimensionless by writing

ψ = gβK�	T

ν
ψ, θ = T − Tc

	T

x = x

�
, y = y

�
(where 	T = Th − Tc > 0) (4)

This results in the non-dimensional equations for our model as

∂2ψ

∂x2
+ ∂2ψ

∂ y2
= ∂θ

∂ y
(5)

Ra

[
∂ψ

∂ y

∂θ

∂x
− ∂ψ

∂x

∂θ

∂ y

]
= ∂2θ

∂x2
+ ∂2θ

∂ y2
+ γ θ p (6)

subject to the boundary conditions that

x = 0, x = 1, ψ = 0,
∂θ

∂x
= 0 (0 < y < 1)

y = 1, ψ = 0, θ = 0 (0 < x < 1)

y = 0, ψ = 0, θ = 1 (0 < x < 1) (7)

In the above

Ra = gβK�	T

αmν
(Rayleigh number)

γ = G�2(	T )p−1

αm
(heating parameter)

Our formulation (4) gives, from (5), a convective flow even at
Ra = 0. An alternative formulation could be to write ψ = Ra−1ψ̃

(or ψ = αmψ̃). In the (θ, ψ̃) variables there is then no convective
flow at Ra = 0, with a flow arising at O (Ra) for Ra small, consistent
with the scaling (4). As a measure of our solution we use the to-
tal (dimensionless) heat Q generated within the convective region
given by

Q =
1∫

0

1∫
0

θ(x, y)dx dy (8)

For general values of the parameters Ra, γ and p, Eqs. (5)–
(7) have to be solved numerically, and we describe our numerical
results in detail below. However, we can gain some insight into
the nature of the problem by considering the case when Ra = 0
and this what we discuss next.

3. Case Ra = 0

When Ra = 0, Eq. (6) for the temperature θ becomes indepen-
dent of that for the flow (5). In this case θ = θ(y) and (6), (7)
reduce to the boundary-value problem

θ ′′ + γ θ p = 0, θ(0) = 1, θ(1) = 0 (9)

where primes denote differentiation with respect to y.
When p = 1, Eq. (9) can be solved as

θ(y) = sin
√

γ (1 − y)

sin
√

γ
(γ > 0)

θ(y) = 1 − y (γ = 0) (10)

with (8) then giving for this case
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Fig. 2. Values of θ ′(0) for Ra = 0 plotted against γ obtained from the numerical
solution of (9) for the values of p labelled on the figure.

Q = 1 − cos
√

γ√
γ sin

√
γ

(γ > 0)

Q = 1

2
(γ = 0) (11)

From (10) or (11) we see that the solution becomes singular as
γ → γc = π2 and this puts an upper bound on the value of γ for
which we can obtain solutions for this case.

For other values of p Eq. (9) has an implicit solution in terms
of hypergeometric functions, however, we find it more straightfor-
ward to solve (9) numerically. We started our numerical solutions
with the solution for γ = 0 (the solution given in (10) for γ = 0
holds for all p). To determine any possible turning points (saddle-
node bifurcations) in the solution, we gave θ ′(0) a prescribed
value, starting with the value θ ′(0) = −1 for γ = 0, and incre-
mented this value in small steps. We used a standard boundary-
value problem solver (D02AGF in the NAG library [23]) to calculate
the corresponding value of γ . The results for several values of p
are shown in Fig. 2 as plots of θ ′(0) against γ . The main features
to note about the curves shown in Fig. 2 are that there is an upper
bound γc on γ for the existence of a solution, with the value of γc

being dependent on p. For γ < γc there are two solution branches
with a saddle-node bifurcation at γc . The value of γc initially de-
creases as p is increased from p = 1 before increasing again for the
larger values of p. The lower branch solutions are the ones found
in our numerical simulations, suggesting that this is the stable so-
lution branch, the saddle-node bifurcation at γc giving an unstable
upper branch. Fig. 2 also indicates that there is a value γ0 of γ
(dependent on p) at which θ ′(0) = 0 on the lower solution branch.
For larger values of γ on this branch, θ ′(0) > 0 and θ(y) achieves
a maximum value above the heated wall value of θ(0) = 1 within
the solution domain.

The value of γc can be determined by solving (9) for θc(y) at
γc together with the homogeneous problem

θ ′′
1 + pγcθ

p−1
c θ1 = 0

θ1(0) = θ1(1) = 0, θ ′
1(0) = 1 (12)

the final boundary condition on θ1 being applied to force a non-
trivial, solution. Eq. (12) can be derived by assuming that γ = γc +
O (|γ −γc |2) near γc , with (12) then being the term of O (|γ −γc |)
in an expansion for θ(y;γ ) in powers of |γ − γc |. Now, from (9),

θ ′
c(y)2 = θ ′

c(1)2 − 2γc
θc(y)p+1 (13)
p + 1
Fig. 3. Values of γc (full line) for Ra = 0 plotted against p, obtained from solving (9)
subject to conditions (17). The region of the γ –p parameter plane where there are
solutions to (9) is labelled on the figure. The values of γ0, where θ ′(0) = 0 on the
lower solution branch are shown by the broken line.

from which it follows that

θ ′
c(0)2 = θ ′

c(1)2 − 2γc

p + 1
(14)

In fact, expressions (13), (14) hold for all solutions to (9).
The general solution to Eq. (12) is seen to be

θ1(y) = A1θ
′
c(y) + B1

(
yθ ′

c(y) + 2

p − 1
θc(y)

)
(p > 1) (15)

for constants A1, B1. Applying the boundary conditions given in
(12) then gives

A1θ
′
c(0) + 2

p − 1
B1 = 0

(A1 + B1)θ
′
c(1) = 0 (16)

from which it follows that

θ ′
c(0) = 2

p − 1
(p > 1)

θ ′
c(1)2 = 4

(p − 1)2
+ 2γc

p + 1
(17)

Applying these conditions in (9) enables γc to be determined and
a graph of γc against p is shown in Fig. 3 (by the full line). This
figure shows that γc has a minimum value of γc � 4.2 at p � 2.8,
consistent with the results shown in Fig. 2, and that γc increases
linearly for the larger values of p. There is a difference between the
cases p = 1 and p > 1 in that, for p = 1, the solution to (9) breaks
down with Q → ∞ and θ ′(0) → ∞ as γ → γc , from (10), (11),
whereas for p > 1, these quantities remain finite at the saddle-
node bifurcation at γc .

To see how the behaviour for the larger values of p arises we
can obtain a solution of (9) valid for p large. In this case there is an
outer region where y is of O (1) and θ(y) < 1 so that the reaction
term θ p is negligible for p large. The solution in this outer region
is, to leading order, θ(y) = 1 − y, chosen to satisfy the boundary
condition at y = 1 and to match at leading order with the inner
region. For this inner region we scale γ by γ = pγ , where γ is of
O (1) for p large and then put Y = yp, θ = 1 + Up−1. This gives,
again at leading order,

U ′′ + γ eU = 0, U (0) = 0

U ∼ −Y as Y → ∞ (18)
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Fig. 4. The effect of Ra on γc , showing γc plotted against Ra for p = 2, 5. � denotes
the values at which numerical integrations were performed.

Fig. 5. The maximum temperature Tmax plotted against Ra for γ = 10.0 with p =
2, 5.

on matching with the outer region. Eq. (18) can be expressed as,
on satisfying the matching condition in (18),

U ′(Y )2 = 1 − 2γ eU (19)

The boundary condition on Y = 0 then gives

U ′(0)2 = 1 − 2γ

(
for γ � 1

2

)
(20)

This is in line with expression (14) and gives

γ c = 1

2
or γc ∼ p

2
+ · · · as p → ∞ (21)

This result is consistent with the slope of the curve for γc plotted
in Fig. 3 for the larger values of p. Our solution for p large gives
θ ′(0) ∼ −1 + γ

p + · · ·, showing that the effect of the heat genera-
tion becomes less significant as the power p increases. For γ < γc
only small maximum temperatures, of O (p−1), above the heated
wall temperature are achieved with these maximum temperatures
arising close to the heated wall.

For Ra = 0 and p = 1, the maximum temperature Tmax is given
by

Tmax = 1 at y = 0

if γ � π2

4

Tmax = 1

sin
√

γ
at y = 1 − π

2
√

γ

if
π2

4
< γ < π2 = γc (22)

from (10). This gives a value γ0 = π2

4 at which the maximum tem-
perature Tmax changes from being Tmax = 1 (γ < γ0) and located
(a)

(b)

Fig. 6. The values of γc plotted against Ra for (a) p = 1, (b) p = 1.1. � denotes the
values at which numerical integrations were performed.

Fig. 7. The values of γ0, where there is a change from having Tmax = 1 to having
Tmax > 1 and fluid temperatures above the heated wall value, plotted against Ra
for p = 1.0, 2.0, 5.0. � denotes the values at which numerical integrations were
performed.

on the heated wall, y = 0, to having Tmax > 1 (γ > γ0) now being
located within the flow domain. To find γ0 for other values of p
we need to solve (9) subject to the extra condition that θ ′(0) = 0.
This gives

θ ′2 = 2γ0

p + 1

(
1 − θ p+1) (23)

The condition that θ(1) = 0 then gives the relation

√
2γ0

p + 1
=

1∫
dθ

(1 − θ p+1)1/2
=

√
π(p + 3)

2(p + 1)

( 1
p+1

)!( p+3
2(p+1)

)! (24)
0
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Fig. 8. Contour plots of the stream function and temperature for γ = 0.1, p = 1 and (a) Ra = 0, (b) Ra = 40, (c) Ra = 100, (d) Ra = 300, (e) Ra = 500.
on expressing the integral in (24) in terms of the Beta Function
[24]. We see that γ0 ∼ p/2 as p → ∞ in line with (19) and (24)
gives the value in (22) for γ0 when p = 1. Values of γ0 are also
shown in Fig. 3 (by the broken line), with θ ′(0) being positive
above this line in the region where solutions exist. The variation
of γ0 with p is almost linear, with γ0 � p/2 + 2 giving a very good
approximation.

4. Results for Ra > 0

4.1. Numerical method

Eqs. (5)–(7) were solved numerically by first replacing the
derivatives by central differences. The resulting sets of finite-
difference equations were solved using Gauss–Seidel iteration. For

a typical numerical run we used a 100 × 100 mesh, giving the step

sizes 	x = 	y = 0.01. We found that the iterative procedure con-

verged relatively easily with this mesh size. We also performed a

few runs with a 200 × 200 mesh to check accuracy, finding good

agreement with runs using a 100 × 100 mesh for the same param-

eter values. We also compared our numerical results with those

obtained from (9) (and with (10) for p = 1) with Ra = 0, again

finding good agreement. Thus giving confidence in the accuracy of

our numerical results.
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Fig. 8. (continued)
4.2. Critical values

For the case with Ra = 0 we have identified a critical value γc

of γ (dependent on p) for the existence of a solution. We started
by examining this point for Ra > 0 by performing numerical runs,
for given values of γ and p, starting at a value of Ra at which we
knew there was a solution and increasing Ra in small increments
until the numerical procedure failed to converge. As a check on
this approach, we used this procedure with Ra = 0 to calculate γc

for several values of p. We found that it gave the same value for
γc determined previously from solving (12) using a boundary-value
problem solver. This gave us confidence that this was a reliable
method for finding critical points for Ra > 0.

In Fig. 4 we plot γc against Ra for p = 2 and p = 5, with
there being a solution for γ � γc(Ra). In this and similar figures
� denotes the values at which numerical integrations were per-
formed. The figure shows that γc starts at the values shown in
Fig. 3 for Ra = 0 and then begins by increasing as Ra is increased.
For larger values of Ra, γc achieves a maximum value, of γc � 28.3
at Ra � 240 for p = 2 and of γc � 14.2 at Ra � 450 for p = 5, be-
fore decreasing towards zero as Ra is increased still further. Fig. 4
shows that the effect of the flow (having Ra > 0 and relatively
weak convection) is to increase the range of γ where there is a so-
lution for the smaller values of Ra. However, further increasing the
effects of the convective flow (increasing Ra) reduces the range of
possible solutions, with there being an upper bound on Ra for the
existence of a (steady) solution. The effect of the flow is to reduce
the fluid temperatures and, in particular, to reduce the maximum
temperature Tmax for given values of γ and p. We illustrate this in
Fig. 5 with plots of Tmax against Ra for γ = 10.0 and p = 2,5. We
note, from Fig. 4, that there is only a limited range of Ra for a so-
lution, that Tmax reduces towards the heated wall temperature of
Tmax = 1 as Ra is increased towards its upper bound and that Tmax
becomes large (though still bounded) at the lower value of Ra for
the existence of a solution.

The situation for p = 1 is somewhat different to the cases when
p > 1. We have already seen that there is a difference when Ra = 0
in that the temperature remains finite for p > 1 but becomes un-
bounded as γ → γc when p = 1, as can be seen from (10). In
Fig. 6a we plot γc against Ra for p = 1. For the larger values of Ra
the behaviour is similar to the previous cases (Fig. 4) with a com-
parable upper bound on Ra. However, for the smaller values of Ra
the situation is markedly different. Now we find that γc achieves
relatively high values for small, but non-zero, values of Ra, with
γc � 75 at Ra = 0.1 compared to γc = 9.870 at Ra = 0. We consid-
ered even smaller values of Ra but were unable to find a ‘smooth
join’ with the result for Ra = 0. The temperatures remained finite
as γ approached γc when Ra > 0.

To examine this point a little further, we considered the case
with p = 1.1. Here we also found an increase in γc for small Ra,
with for example γc = 36.9 at Ra = 0.1, though now we were able
to find a smooth join with the value of γc = 7.533 for Ra = 0 by
taking even smaller values of Ra as can be seen in Fig. 6b where
we plot γc against Ra for small values of Ra. This figure shows that
γc decreases rapidly from its value at Ra = 0.1 towards the much
smaller value for Ra = 0.

From the above discussion for Ra = 0 we can expect, at least for
small values of γ and Ra > 0, that the maximum temperature Tmax
to be at the heated wall (Tmax = 1) whereas with increased val-
ues of γ and Ra we might expect higher temperatures (Tmax > 1)
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Fig. 9. Contour plots of the stream function and temperature for γ = 2.0, p = 1 and (a) Ra = 0, (b) Ra = 40, (c) Ra = 100, (d) Ra = 300, (e) Ra = 500.
with these being located within the flow domain. In Fig. 7 we
plot γ0 against Ra for p = 1,2,5. The values of Ra and γ be-
low these curves are where the maximum temperature Tmax = 1,
located on the heated (vertical) wall with the fluid temperature
being everywhere less than this. The values of Ra and γ above
these curves are where Tmax > 1, being located on the upper (in-
sulated) wall with fluid temperatures above the heated wall value
now being achieved. This figure shows that increasing the expo-
nent p requires a larger value of γ (increased local heating) before
temperatures above Tmax = 1 are achieved. However, this effect be-
comes less significant as Ra is increased with, for larger values of
Ra, smaller local heating rates being needed to produce tempera-
tures above the heated wall value.
4.3. Numerical results

Here we consider how the convective flow, through varying
the Raleigh number Ra, affects the temperature field and the heat
transfer. We consider different values for γ representative of the
internal heating effect as well as different values for p. We start
by considering a case where the effects of the internal heating are
relatively weak, namely γ = 0.1.

4.3.1. Weak heating, γ = 0.1
In this case we found that Tmax = 1, located on the heated wall,

with the fluid temperatures being less than Tmax throughout for
all the values of Ra tried up to the critical value of Ra for p = 1,2
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Fig. 9. (continued)
and 5. This case is illustrated in Fig. 8 showing temperature and
streamline contour plots for a range of values of Ra from Ra = 0
to Ra = 500 and p = 1. Fig. 8 shows how the flow and tempera-
ture distribution evolve as Ra is increased. For Ra = 0 (Fig. 8a) the
temperature is given by (9) (or by (10) for p = 1), being dependent
only on y with a symmetric eddy flow centred on the mid-point of
the domain. As Ra is increased, the isotherms become distorted by
the flow, giving higher temperatures in a region towards the top
of the heated wall and lower temperatures in the opposite cor-
ner. The streamline pattern also becomes distorted with stronger
flows developing on the heated (y = 0) and cooled (y = 1) walls
(Figs. 8b and 8c for Ra = 40 and Ra = 100).

At higher values of Ra (Fig. 8d for Ra = 300) the extent of these
high, T � 1, and low, T � 0, temperature regions increase in size. A
strong upflow develops on the heated wall and a strong downflow
on the cooled wall with only a weak eddy flow in the central re-
gion. These convective effects become more pronounced at higher
values of Ra (Fig. 8e for Ra = 500). Here boundary layers form on
both the heated and cooled vertical walls. The temperature dis-
tribution in the central region becomes strongly dependent on x
and almost independent of y (compare with Fig. 8a) and the flow
in this region becomes almost stagnant. We note that very similar
behaviour was seen for the other values of p tried for this value
of γ .

4.3.2. Moderate heating, γ = 2.0
Since, from (22) or (24), γ0 > 2.0 for all p � 1 with Ra = 0,

we have Tmax = 1 for Ra = 0 with this maximum temperature
being located on the heated wall, y = 0. We illustrate this case
with contour plots for p = 1 for a range of Ra. The situation for
Ra = 0 (Fig. 9a) is similar to the previous case, though now, as ex-
pected from (10), the temperature and streamfunction profiles are
more distorted towards the cooled wall. For Ra = 40,100 (Figs. 9b,
9c), the picture is in general similar to the previous case but now
having slightly stronger flow rates. There is a difference with the
previous case in that there is a small region close to the top of the
heated wall where the fluid temperature is slightly above that on
the heated wall, i.e. here Tmax > 1. This situation continues to the
higher values of Ra (Figs. 9d, 9e for Ra = 300, 500) with bound-
ary layers developing on both the heated and cooled walls and
with an almost stagnant central region. There is still a small region
where the fluid temperature is above T = 1 for Ra = 300 (Fig. 9d)
though here Tmax is smaller than for Ra = 40 and Ra = 100. How-
ever, for Ra = 500 this region disappears with now Tmax = 1. Also
at Ra = 500 the temperature within the main part of the flow re-
gion is almost independent of y. Again the results for higher values
of p were found to be similar to those for p = 1.

4.3.3. Strong heating, γ = 5.0
To illustrate this case we take γ = 5.0. For p = 1 and Ra = 0 ex-

pression (22) gives γ0 = 2.4674 and so Tmax > 1 with (22) giving
Tmax = 1.2711 located at y = 0.2975 (away from the heated wall
y = 0). This effect can be seen in Fig. 10a (Ra = 0), where the max-
imum flow rates now occur towards the cooled wall. For Ra = 40
(Fig. 10b) and Ra = 100 (Fig. 10c) the temperature and flow fields
become distorted with stronger convective flows developing on the
vertical walls (upwards on the heated wall and downwards on the
cooled wall). The maximum temperature is still above T = 1 and
is located on the top wall, though the value of Tmax is reduced
as Ra is increased, from Tmax � 1.201 for Ra = 40 to Tmax � 1.053
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Fig. 10. Contour plots of the stream function and temperature for γ = 5.0, p = 1 and (a) Ra = 0, (b) Ra = 40, (c) Ra = 100, (d) Ra = 300, (e) Ra = 500.
for Ra = 100, though still noticeably greater than for the interme-
diate heating case. For Ra = 300 (Fig. 10d) and Ra = 500 (Fig. 10e)
the same trends are seen as in the previous case, with bound-
ary layers developing on the vertical walls and an almost stagnant
flow in the central region. The value of Tmax is further reduced, to
Tmax � 1.005 for Ra = 500, with the region where the temperature
is above the heated wall value becoming smaller.

We considered this case for different values of p, with contour
plots for p = 2 and p = 5 shown in Figs. 11 and 12, respectively.
The same general trends are seen, the maximum temperature is
above the heated wall value for all the Ra for which a (steady)
solution is possible with this decreasing and moving towards the
upper part of the heated wall as Ra is increased. The values of
Tmax, for a given Ra, decrease slightly as p is increased, for ex-
ample, for Ra = 40, Tmax = 1.201, 1.112 and 1.100 for p = 1,2
and 5, respectively. The strength of the convective eddy flow also
decreases slightly as p is increased. These results for the strong
heating case (γ = 5) suggest that the value of p does not have
a major effect on the flow and heat transfer within the porous
medium in this case.

4.3.4. Total heat generation, Q
The main effect of the internal heating on the flow and heat

transfer, on comparing with the results for γ = 0, are increased
temperatures (which can be above the heated wall temperature)
and stronger convective eddies. These differences are more pro-
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Fig. 10. (continued)
nounced as the value of γ is increased and become less significant
as Ra is increased.

We can see this effect on the heat transfer in Fig. 13, where we
plot Q , defined in (8), against Ra for different values of p and γ .
For p = 1 and p = 2, Figs. 13a and 13b, respectively, Q decreases
as Ra is increased for each of the values of γ tried. In both cases
the total heat generated Q is above that for the case without any
local heating, γ = 0, shown in Fig. 13a by a broken line. However,
for p = 5, Fig. 13c, there is an increase in the total heat content Q
for small Ra, with Q achieving a maximum value at a non-zero Ra
before decreasing. This effect becomes more pronounced as γ is
increased. These figures show that, for certain values of γ , p and
Ra, significantly larger amounts of heat can be generated within
the porous medium by the local heating, well above what would
normally arise if this effect were not present.

5. Conclusion

We have considered the effects that internal heating at a rate
proportional to the local temperature difference can have on the
convective flow and heat transfer within a porous material. We
have seen that there are three dimensionless parameters that de-
scribe this situation, namely a Rayleigh number Ra, a heating rate
parameter γ and the exponent p in the local heating term. We
started by considering the case Ra = 0, where the temperature
field is independent of the flow. For this case we identified a crit-
ical value γc of γ , such that there were solutions possible only
for γ � γc , with γc depending on p, see Figs. 2 and 3. This case
also led to a value γ0, where was a change in the maximum tem-
peratures Tmax achieved, see expressions (22), (24). For γ < γ0

the temperature within the porous material was everywhere less
than that on the heated wall, i.e. Tmax = 1. However, with γ > γ0,
temperatures above this can be generated by the local heating, i.e.
Tmax > 1.

Our numerical results for Ra > 0 also showed the existence of
a critical value γc for γ , see Fig. 4. We also identified a value γ0

from our numerical results, with Tmax > 1 for γ > γ0, see Fig. 7,
with now γc and γ0 dependent on both Ra and p. There appears to
be a difference between the cases p = 1 and p > 1. For Ra = 0 the
solution became unbounded at γc when p = 1, whereas there was
a saddle-node bifurcation with the solution remaining bounded at
γc when p > 1. This was also seen in the numerical results for
Ra > 0 through not being able to ‘join’ these solutions to those for
Ra = 0 with p = 1, see Fig. 6, at least for the very small values of
Ra tried.

Our numerical results show that significantly higher tempera-
tures can be generated by the internal heating, particularly for the
larger values of γ , see Figs. 10–12. In these cases regions where
the temperature is above the heated wall value T = 1 arise towards
the top of the region and near the heated vertical wall and with
stronger convective flows being set up, at least for moderate values
of Ra. For larger values of Ra, boundary-layer flows develop on the
vertical walls with a much weaker eddy flow in the central region.
Thus for larger values of Ra, the internal heating becomes con-
fined mainly to the upward flowing boundary layer on the heated
wall and its overall effect is reduced, as can be seen in Figs. 5
and 13.
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Fig. 11. Contour plots of the stream function and temperature for γ = 5.0, p = 2 and (a) Ra = 40, (b) Ra = 100, (c) Ra = 300, (d) Ra = 500.
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Fig. 12. Contour plots of the stream function and temperature for γ = 5.0, p = 5 and (a) Ra = 40, (b) Ra = 100, (c) Ra = 300, (d) Ra = 500.
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(a)

(b)

(c)

Fig. 13. Plots of the total heat content Q , defined in (8), against Ra for the values
of γ labelled on the figure and for (a) p = 1, (b) p = 2, (c) p = 5. The broken line
denotes the solution for γ = 0, no internal heating.
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